
A Study on the Accuracy of OCR Engines for Source Code
Transcription from Programming Screencasts

Abdulkarim Khormi1,2, Mohammad Alahmadi1,3, Sonia Haiduc1
1Florida State University, Tallahassee, FL, United States

{ khormi, alahmadi, shaiduc } @cs.fsu.edu
2Jazan University, Jizan, Saudi Arabia

3University of Jeddah, Jeddah, Saudi Arabia

ABSTRACT
Programming screencasts can be a rich source of documentation
for developers. However, despite the availability of such videos,
the information available in them, and especially the source code
being displayed is not easy to find, search, or reuse by programmers.
Recent work has identified this challenge and proposed solutions
that identify and extract source code from video tutorials in order
to make it readily available to developers or other tools. A crucial
component in these approaches is the Optical Character Recogni-
tion (OCR) engine used to transcribe the source code shown on
screen. Previous work has simply chosen one OCR engine, without
consideration for its accuracy or that of other engines on source
code recognition. In this paper, we present an empirical study on
the accuracy of six OCR engines for the extraction of source code
from screencasts and code images. Our results show that the tran-
scription accuracy varies greatly from one OCR engine to another
and that the most widely chosen OCR engine in previous studies is
by far not the best choice. We also show how other factors, such
as font type and size can impact the results of some of the engines.
We conclude by offering guidelines for programming screencast
creators on which fonts to use to enable a better OCR recognition of
their source code, as well as advice on OCR choice for researchers
aiming to analyze source code in screencasts.

CCS CONCEPTS
• Software and its engineering→ Documentation; • Computer
vision → Image recognition;

KEYWORDS
Optical Character Recognition, Code Extraction, Programming
video tutorials, Software documentation, Video mining
ACM Reference Format:
Abdulkarim Khormi1 ,2, Mohammad Alahmadi1 ,3, Sonia Haiduc1. 2020. A
Study on the Accuracy of OCR Engines for Source Code Transcription
from Programming Screencasts. In 17th International Conference on Mining
Software Repositories (MSR ’20), October 5–6, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3379597.3387468

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387468

1 INTRODUCTION
Nowadays, programmers spend 20-30% of their time online seeking
information to support their daily tasks [6, 11]. Among the plethora
of online documentation sources available to them, programming
screencasts are one source that has been rapidly growing in popu-
larity in recent years [17]. For example, YouTube alone hosts vast
amounts of videos that cover a large variety of programming topics
and have been watched billions of times. However, despite their
widespread availability, programming screencasts present some
challenges that need to be addressed before they can be used by de-
velopers to their full potential. One important limitation is the lack
of support for code reuse. Given that copy-pasting code is the most
common action performed by developers online [6], programming
screencasts should also strive to support this developer behavior.
However, very few programming screencast creators make their
source code available alongside the video, and online platforms
like YouTube do not currently have support for automatic source
code transcription. Therefore, developers often have no choice but
to manually transcribe the code they see on the screen into their
project, which is not only time consuming, but also cumbersome,
as it requires pausing-and-playing the video numerous times [23].

Researchers have recently recognized this problem and proposed
novel techniques to automatically detect, locate, and extract source
code from programming tutorials [1, 2, 14, 19, 20, 24, 32, 34]. While
different approaches to achieve these goals were proposed, they all
have one component in common: an Optical Character Recognition
(OCR) engine, which is used to transcribe the source code found in
a frame of the screencast into text. To ensure the most accurate ex-
traction of source code from programming screencasts, one needs to
carefully choose the OCR engine that performs the best specifically
on images containing code. However, no empirical evaluation cur-
rently exists on the accuracy of OCR engines for code transcription.
Previous work that analyzed programming screencasts [14, 25, 32]
simply picked one OCR engine, namely Tesseract1, and applied it
to programming screencast frames. However, without validating its
accuracy or comparing it to other OCR engines on the task of code
transcription, there is no evidence that Tesseract is the best choice
for transcribing source code. Choosing a suboptimal OCR engine
can lead to noise that is difficult to correct, and therefore code that
is hard to reuse without expensive post-processing steps or man-
ual fixing. To this end, there is a need for an empirical evaluation
that examines the accuracy of different OCR engines for extracting
source code from images, with the goal of finding the engine with
the lowest risk of code transcription error.

1https://github.com/tesseract-ocr

https://doi.org/10.1145/3379597.3387468
https://doi.org/10.1145/3379597.3387468

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Abdulkarim Khormi1 , 2 , Mohammad Alahmadi1 , 3 , Sonia Haiduc1

In this paper, we address this need and present a set of exper-
iments evaluating six OCR engines (Google Drive OCR, ABBYY
FineReader, GOCR, Tesseract, OCRAD, and Cuneiform) applied
to images of code written in three programming languages: Java,
Python, and C#. We evaluate the OCR engines on two code im-
age datasets. The first one contains 300 frames extracted from 300
YouTube programming screencasts (100 videos per programming
language, one frame per video). The evaluation on this dataset is
relevant to researchers working on the analysis of programming
screencasts and software developers wanting to reuse code from
screencasts. The experiments on this dataset allow us to determine
the best OCR engine for source code extraction from screencasts,
therefore reducing the risk of error in the OCR results and increas-
ing the potential for reuse of the extracted code. The second dataset
is composed of 3,750 screenshots of code (1,250 per programming
language) written in an IDE using different font types and font
sizes. The code was extracted from a variety of GitHub projects,
then locally opened in a popular IDE, where a screenshot of the
code region was taken. This dataset, unlike the first one, allowed us
to manipulate the font used to write the code in the IDE and change
its size and type, in order to observe how these factors impact the
accuracy of OCR engines. The results on this dataset are relevant
for creators of programming screencasts, revealing font types and
sizes that enable better OCR on the code in their screencasts. At
the same time, researchers can use these results as guidelines for
identifying screencasts that lend themselves to OCR the best.

Our results show that there are significant differences in accuracy
between OCR engines. Google Drive OCR (Gdrive) and ABBYY
FineReader performed the best, while the default choice in previous
work, Tesseract, was never in the top three best performing OCR
engines.We also found that applying OCR on code written using the
DejaVu SansMono Font produced the best results compared to other
fonts such as Consolas, Arial, Courier New, and Times New Roman.
Moreover, font size impacted the OCR accuracy significantly for
some OCR engines such as Tesseract. However, ABBY FineReader
and Google Drive OCR worked the best regardless of the font size.

The rest of the paper is organized as follows. Section 2 introduces
the OCR engines and the font types used in our study, Section 3
describes the empirical studywe performed on two datasets, Section
4 presents the results we obtained, Section 5 discusses related work,
Section 6 discusses threats to validity, Section 7 discusses the results,
and Section 9 concludes the paper and describes future work.

2 BACKGROUND
This section introduces important background information about
OCR engines and font types.

2.1 OCR Engines
Optical Character Recognition (OCR) is the electronic conversion of
images of typed, handwritten, or printed text into machine-encoded
text. OCR has been used in many fields, for various applications,
including data entry from printed records, forms, and documents;
recognition of text on road signs, etc. The main advantages of using
OCR technology is the fact that it transforms an image into a format
that is searchable, editable, and easy to store electronically.

OCR has also been recently adopted by researchers in software
engineering for extracting source code from programming video
tutorials [14, 24, 32]. It brings great promise in this area of research,
allowing the text found in programming tutorials, including the
source code, to be extracted, indexed, searched, and reused. While
researchers in software engineering have only used one OCR engine
thus far (i.e., Tesseract), there are several other OCR engines that use
different computer vision algorithms, leading to high-quality text
extraction and real-time performance. In this paper, we investigate
and compare six well-known OCR engines: Google Docs OCR,
ABBYY FineReader, GOCR, Tesseract, OCRAD, and Cuneiform.

Google Drive2 is a file storage and synchronization service
developed by Google, which interacts with Google Docs, a cloud
service allowing users to view, edit, and share documents. Google
Drive provides an API, which allows converting images into text
using the Google Docs OCR engine. The text extraction process
is performed through a cloud vision API that Google uses in the
back-end with a custom machine learning model in order to yield
high accuracy results.

ABBYY FineReader3 is a commercial OCR software company
that offers intelligent text detection for digital documents. It can
process digital documents of many types, such as PDF or, in our
case, a video frame containing source code. FineReader uses an
advanced algorithm to preserve the layout of the image during the
text extraction process. It offers a paid plan, in which users can
create a new pattern to train the engine. However, we used the
built-in default patterns of the free trial version of FineReader 12 in
our work. FineReader offers a software development kit (SDK)4 to
facilitate the OCR extraction process for developers. We used the
SDK in our study to enable the efficient processing of our datasets.

GOCR5 is a free OCR engine that converts images of several
types into text. Its fast performance, accuracy, and simplicity make
GOCR very practical [10]. It does not require training and handles
20-60 pixels height of single-column sans-serif fonts. Its perfor-
mance typically degrades in low-quality images, hand-typed texts,
and heterogeneous fonts [3]. We used GOCR 0.51 in our study.

Tesseract6 is an open-source OCR engine developed at HP and
released to Google in 2005. Tesseract detects blobs in images that
form text lines [28], which in turn are divided into words by de-
tecting the spaces between them [29]. Recognition is performed
through two phases that work as a pipeline: (i) recognize each
word individually and (ii) run an adaptive classifier to optimize the
recognition performance further. Tesseract has been used in several
works that are dedicated to code extraction from video program-
ming tutorials [14, 24, 32]. We used version 4.0 in our study.

OCRAD7 is a free OCR engine supported by the GNU Project.
It performs feature extraction on the input image and uses the
extracted features to produce text. Like other OCR engines, OCRAD
analyzes the layout to recognize text blocks. It typically achieves
its best performance when applied to characters of a minimum
height of 20 pixels. OCRAD also includes an option to scale the

2https://www.google.com/drive/
3https://www.abbyy.com/
4https://www.abbyy.com/resp/promo/ocr-sdk/
5http://jocr.sourceforge.net/
6https://github.com/tesseract-ocr/tesseract
7http://www.gnu.org/software/ocrad/

A Study on the Accuracy of OCR Engines for Source Code Transcription from Programming Screencasts MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

words to the proper character size. It has several built-in filters that
include, but are not limited to: letters-only to discard any number
from the input and text-block to discard any noise identified outside
the detected text lines. We used OCRAD 0.24 in our study.

Cuneiform8 is an open source OCR engine originally developed
by Cognitive Technologies. It supports multiple languages and it
preserves the document structure. The format of the extracted text
can be HTML, rtf, text, and others. Cuneiform does not require any
learning algorithm. We used Cuneiform 1.1 in our study.

2.2 Font Types
In our study, we make use of several fonts in order to observe if the
font type and size have an impact on the accuracy of OCR engines.
In this section, we present some background information on fonts
and their categorization, in order to set the context for our study.

Type families or typefaces can be divided into two main cat-
egories based on their features: Serif and Sans-Serif. Serif fonts
attach a small line or stroke at the end of each larger stroke in a
letter or symbol. Sans-Serif fonts exclude such features; note that
Sans is a French word meaning "without" (e.g., without the ending
features on strokes). In addition to the feature-based categories,
typefaces can be classified into two other categories based on the
width they assign to characters. Proportional typefaces assign a
width to each character based on its shape. For example, the letter
(M) is wider than the letter (I).Monospaced fonts, on the other hand,
assign a fixed width to each character. While there are many other
categories of typefaces [8], we limit our analysis in this paper to the
ones presented below. Each typeface or type family also includes
several individual fonts. We describe briefly below some of these
fonts and mention the ones we used in our study.

Serif types. This category includes two widely used fonts: Times
New Roman and Garamond. Serif is very commonly used in elec-
tronic books and other digital documents such as magazines and
newspapers. In our study, we focus on Times New Roman from
this category, as it is the most commonly used font of this type in
electronic documents.

Sans-serif types. The most common fonts belonging to this
category are Helvetica and Arial. U.S. advertisements prioritize the
use of Helvetica as it became the default typeface [27]. Arial has
become a very popular font since it was the default font in several
Microsoft products such as Microsoft Word. In our study, we focus
on Arial from this category, as it is the most commonly used font
of this type in electronic documents.

Monospaced types have been designed since the early age of
computers for typewriters. The popularity of Monospaced types
continued and this type of fonts has been favored in different tasks
such as programming and writing tabular data [30]. Popular fonts
belonging to this category include Courier New, DejaVu Sans
Mono, and Consolas. We consider all three of these fonts in our
study since they represent the default fonts in the most popular
IDEs for the programming languages used in our study, as explained
later in Section 3.1.2 and Table 1.

8https://www.linuxlinks.com/cuneiform/

3 EMPIRICAL STUDY
In this section, we present the methodology, research questions,
dataset, and results of the study on the accuracy of OCR engines in
the context of source code extraction from programming screen-
casts and images of source code. We first introduce the two datasets
we used and the procedure we followed for the data collection. We
also make our datasets available in our replication package9.

3.1 Datasets and Data Collection
In order to establish the OCR accuracy for each engine, we first
manually collect the ground truth data consisting of images of
source code and the text representing the actual source code ex-
tracted from those images. We use two types of images, resulting in
two distinct datasets. First, we used YouTube programming screen-
casts to extract static video frames containing source code, similar
to previous work on source code extraction from programming
screencasts [14, 25, 32]. By studying the performance of OCR en-
gines on this type of data, we hope to help researchers in this line
of research by finding and recommending the best OCR engine
for code extraction from videos. Our second dataset consists of
screenshots of different code snippets extracted from open source
software systems and open in an IDE. We vary the size and type
of the source code font such that we can observe the impact of
these factors on the performance of the OCR engines and therefore
recommend the best settings for future screencast creators. In the
next subsections we explain in detail each dataset and the process
we followed to obtain it.

Figure 1: A screenshot of DataTurks, the cloud annotation
tool used for the YouTube dataset annotation process.

3.1.1 YouTube Screencasts Dataset. For our first dataset, we
turned to YouTube, where vast amounts of programming screen-
casts on a variety of topics are hosted. For our study, we were
interested in programming screencasts displaying code written in
three programming languages: Java, C#, and Python. For each pro-
gramming language, we selected a total of 100 screencasts, aiming
to establish a diverse dataset in terms of the creators of the videos,
the IDEs used to write the code, the color of the background, and
the topics addressed in the videos. In total, we selected 300 videos
following these diversity criteria and used the YouTube-dl10 tool to
9https://zenodo.org/record/3743394
10https://github.com/ytdl-org/youtube-dl

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Abdulkarim Khormi1 , 2 , Mohammad Alahmadi1 , 3 , Sonia Haiduc1

Figure 2: A screenshot of the web-based tool used for the
code transcription.

download them. For each video, we then extracted one frame per
second using the FFMPEG11 tool. We then picked one representa-
tive frame from each video and included that frame in our dataset,
for a total of 300 frames. The representative frame for each video
was selected such that it contained a non-trivial amount of code
and the code was fully visible on the screen (i.e., not obstructed by
other windows or popups). We selected only one frame per video
since many of the frames in the same video may display the same
piece of code and also share the same image features such as IDE,
font type and size, background color, etc. Also, since creating the
ground truth for this dataset involved manually transcribing the
code from the screen, it was a very effort-intensive task that limited
the number of frames we could consider. Therefore, we aimed to
maximize the variety of the frames and of the extracted code by
selecting only one frame per video and considering more videos,
rather than choosing multiple frames from the same video.

Since our goal was to observe the performance of OCR engines
for the transcription of source code, we wanted to avoid transcrib-
ing noise and focus on applying the OCR engines only on the code
snippets. In order to ensure this, one of the authors manually anno-
tated each of the 300 frames with a bounding box that encapsulated
only the code snippet. For streamlining this task and minimizing
errors, the author used the DataTurks12 cloud annotation tool (see
Figure 1). Another author then validated each annotated bounding

11https://www.ffmpeg.org/
12https://dataturks.com/

box, and, in case of disagreement, the two authors discussed the
conflicts until a final bounding box was agreed upon. Then, each
image was cropped to the code bounding box using the mogrify13
tool.

To evaluate the performance of the OCR engines, we need the
ground truth source code for each video frame. Two of the authors
and two other programmers divided the 300 images and manually
transcribed the code in each using an in-house web-based tool (Fig-
ure 2). The tool was developed to facilitate the code transcription
process. Our tool displays one image at a time from our dataset,
with an editing box where the annotators can type the code they
see embedded in the image. We added a few options to navigate
between frames using the previous and next buttons. Once the code
is fully written, the annotators can save or update the transcribed
code using a button. For improving the user experience, we added
keyboard shortcuts (i.e., Ctrl+Left, Ctrl+Right, andAlt+S for previous,
next, and textitsave, respectively). To ensure that the transcribed
code is correct, one of the authors validated each transcribed source
code snippet and corrected the ones containing mistranscriptions.
Out of the 300 source code files, 56 were corrected. The corrected
mistranscriptions include typos, missing semicolons and parenthe-
ses, and case sensitive errors. Another author again validated all
corrected files and found no further corrections needed.

3.1.2 ScreenshotsDataset. Our second dataset consists of screen-
shots we took of code opened in an IDE. This dataset allows us
to have control over the font that the source code is written in
and manipulate its size and type. This, in turn, allows us to see
the impact that changes in these factors have on the performance
of OCR engines in extracting the code. Given that IDEs support
different font sizes and types, it is important to ensure we study
screenshots of the source code with various font configurations.

In this study, we considered the default fonts of the top five most
popular IDEs [7] at the time of our data collection (see Table 1),
as well as the most popular fonts used in electronic documents.
Specifically, we used three monospaced fonts (Courier New, DejaVu
Sans Mono, and Consolas) and two standard proportional fonts
(Times New Roman and Arial). Note that, Courier New and Times
New Roman are Serif fonts, whereas DejaVu Sans Mono, Consolas,
and Arial are Sans-Serif fonts. Concerning the font size, we used
different font sizes that range from 10 to 14 points for each font.

To obtain the source code for this dataset, we used the GitHub
API to download the top 50 projects in GitHub in terms of star
ratings for each of the three programming languages we consider
in this study: Java, C#, and Python. We then selected one source
code file from each of the total 150 projects we downloaded, such
that each file has a size of at least 0.5 KBytes (to ensure it contains
enough source code). We then opened each file in an IDE and took
a screenshot of a part of the file. In order to determine which part
of the file to display on the screen and capture in our screenshots,
we needed to consider a few things. First, given the font sizes we
consider in our study (10 to 14 points), the default code window size
in an IDE can display up to 35 lines without having to scroll up or
down. Second, the first few lines of a lot of source code files could be
very similar (e.g., import package statements), even across different
projects. Therefore, in order to ensure variety in our dataset, it is
13https://imagemagick.org/script/mogrify.php

A Study on the Accuracy of OCR Engines for Source Code Transcription from Programming Screencasts MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 1: Default font settings in Linux and Windows for the top five IDEs.

IDE Linux Windows
Font Type Font Size Font Type Font Size

Android Studio DejaVu Sans Mono 12 Courier New 12
Visual Studio Courier New 14 Consolas 10
Eclipse Courier New 10 Consolas 10
NetBeans Courier New 13 Courier New 13
PyCharm DejaVu Sans Mono 12 Consolas 13

important to vary the position in the file at which we capture the
source code. We, therefore, chose 35 consecutive lines that were
found at random positions in each of the 150 files considered.

Taking the screenshots for our dataset by hand would require a
very intensive human effort. Specifically, the following steps would
need to be performed for each of the 150 files considered:

(1) Open the file in the IDE.
(2) Change the font type and size five times each, for a total of

25 combinations.
(3) For each combination of font type and size, scroll the file to

the randomly determined position inside the file.
(4) Take a screenshot.
Therefore, taking the 3,750 screenshots by hand is unfeasible.

We thus developed a tool called AUTOScR to automate the pro-
cess described above for taking the screenshots. The IDE used by
AUTOScR is Microsoft Visual Studio Code, which offers all the
font configurations we needed. AUTOScR uses the xdotool tool14
to simulate keyboard input programmatically and the scrot tool15
to record the current window into a PNG image file. We developed
AUTOScR to automatically change the font type of Microsoft Visual
Code as follows. AUTOScR opened the settings window by sending
the key combination Ctrl+comma. Then, AUTOScR types the word
"font" by sending the keys "f o n t" and sends the tab key four times
to set the focus on the font family field and insert the font type.
After that, for each font type, AUTOScR changes the font size of
the code editor to each value in the range from 10 to 14 points. For
each font size, AUTOScR sets the focus to the font size field using
the same procedures except sending the key tab six times instead
of four times. Finally, AUTOScR opened the source code files at
randomly selected positions in Microsoft Visual Code one by one.
After opening a file (e.g., f1.java), AUTOScR took a screenshot of
the active window into the corresponding image file (i.e., f1.png).
Finally, AUTOScR closed the active window by sending the key
Ctrl+W.

A total of 3,750 screenshots of code written in three different
programming languages (Java, C#, and Python) were taken using
our tool. After we took the screenshots, we cropped all images to
only the code area using mogrify16. Moreover, since the OCRAD
OCR engine accepts only pbm, pgm, or ppm files, we created a ppm
copy of all images using mogrify. In the case of this second dataset,
getting the ground truth source code was trivial, since it was the
same source code we took the screenshots of.
14https://www.semicomplete.com/projects/xdotool/
15https://github.com/dreamer/scrot
16https://imagemagick.org/script/mogrify.php

3.2 Accuracy Metric
We evaluate the performance of the six OCR engines by comparing
the text they extract from our two datasets to the ground truth
source code for each. In previous work, edit-based similarity met-
rics have been used to measure the similarity between two strings
in OCR-related studies [13, 31]. In our study, we use a normalized
version of the Levenshtein distance metric [15] (LD), which is an
edit-based similarity metric, to capture the difference between the
OCRed text and the ground truth source code. The Levenshtein
distance counts the number of insert, substitute, and delete oper-
ations required to change one string to another. We normalized
LD to obtain an accuracy score that ranges between zero and one,
as defined in Equation 1. The Normalized Levenshtein distance
(NLD) then represents the similarity percentage between two texts
t1 and t2, where an NLD of zero means the two texts are completely
dissimilar, and an NLD of one indicates that they are identical.

NLD(t1, t2) = 1 − LD(t1, t2)
max(len(t1), len(t2))

(1)

One known limitation of LD is that it also counts the number
of inserted spaces and blank lines, as they are considered regular
characters. However, for many programming languages, including
C# and Java which we considered in our study, the spaces and blank
lines do not have any effect on the behavior of the source code.
With this in mind, given that OCR engines can introduce spaces
in the original text during the transcription process, we ignore the
leading and trailing spaces and blank lines in the texts for most of
our analysis.

One exception, on the other hand, is Python, where white spaces
indicate groups of statements and are important to the compilation
of Python scripts. Therefore, we introduced a separate analysis in
our study on the effect that removing or keeping white spaces and
blank lines has on the accuracy of OCR engines in transcribing
Python code.

3.3 Research Questions and Methodology
In this study, we are interested in observing the accuracy and perfor-
mance of OCR engines when applied to images containing source
code. To evaluate the six different OCR engines, we used the two
datasets collected in Section 3.1. For screenshots, we varied the
font type and size according to the five font types and five sizes
mentioned in Section 3.1.2. Mind that for the frames we extracted
from videos, we cannot vary and cannot accurately predict the
font type and size. Therefore, we do not study these factors in the
context of video frames.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Abdulkarim Khormi1 , 2 , Mohammad Alahmadi1 , 3 , Sonia Haiduc1

Our aim is to answer the following research questions:
RQ1:What are the accuracy scores of the OCR engines for

extracting code from video frames?
To answer this research question, we applied each of the six OCR
engines to the 300 video frames extracted from programming screen-
casts and then compared the text they extracted against the ground
truth source code using the NLD score while ignoring spaces and
blank lines.

RQ2:What are the accuracy scores of the OCR engines for
extracting code from screenshots?
To answer this research question, we applied each of the six OCR
engines to the 3,750 source code screenshots obtained from the
150 source code files imported from GitHub by applying all the 25
combinations of font size and type one by one and then considering
the aggregated results. We then compared the text that the OCR
engines extracted from these screenshots to the ground truth source
code using the NLD score, while ignoring spaces and blank lines.

RQ3: To what extent does the font type affect the code ex-
traction performance from screenshots?
To answer this question, we computed the average NLD accuracy
score for OCR engines when applied to screenshots with respect to
the different font types, while ignoring spaces and blank lines.

RQ4: To what extent does the font size affect the code ex-
traction performance from screenshots?
To answer this question, we computed the average NLD accuracy
score for OCR engines when applied to screenshots with respect to
the different font sizes, while ignoring spaces and blank lines.

RQ5: Towhat extent does the programming language have
an effect on the accuracy scores of the OCR engines?
To answer this research question, we computed the average NLD
score for each OCR engine applied to both screenshots and video
frames with respect to the three programming languages consid-
ered, while ignoring spaces and blank lines.

RQ6: What is the effect of the space and blank line trim-
ming step on the accuracy of the OCR engines on Python
code?
As noted in Section 3.2, spaces and blank lines may only have an
impact on Python code among the three programming languages
considered in our study. However, the impact of this aspect is un-
known. In this research question, we aim to quantify this impact
on the accuracy of the OCR engines by comparing their results on
Python code with or without applying the space and blank line
trimming step on the extracted text and ground truth.

RQ7: What is the time performance of OCR engines when
extracting source code from video frames and screenshots?
To answer this research question, we computed the running time
of each OCR engine during the extraction process using the system
call time. The system call time computes the real-time from start
to finish of the process. This is all elapsed time, including time
slices used by other processes. We performed the extraction for all
engines in the same conditions, using a machine with an Intel Core
i7-7820HQ Quad-Core 2.90GHz processor and 32GB RAM with a
high-speed Internet connection (200 Mbps).

4 RESULTS
This section presents the results for each of our research ques-
tions. The full results of our study are available in our replication
package17.

4.1 OCR Engines and Video Frames
To answer this research question, we computed the overall accuracy
for each engine in terms of its NLD on extracting source code from
video frames. The results are shown in Figure 3. Google Drive API
and ABBYY FineReader had the best overall accuracy, 95%, and
93%, respectively. GOCR and Tesseract followed, with accuracies of
67% and 57%, respectively. Finally, OCRAD and Cuneiform scored
the lowest of all OCR engines, with accuracies of 26% and 20%,
respectively.

Surprisingly, our results show that the only OCR engine em-
ployed in previous work on the extraction of source code from
video frames [14, 25, 32], Tesseract, was only fourth in terms of
accuracy, and performed worse than Google Drive API, ABBYY
FineReader, and GOCR. This indicates that previous approaches may
benefit from adopting a more accurate OCR engine for this particular
task, such as Google Drive API or ABBYY FineReader.

ABBYY

Cun
eif

orm
Gdri

ve
GOCR

OCRAD

Te
sse

rac
t

0%

20%

40%

60%

80%

100%

Figure 3: Boxplots of the OCR engines’ accuracies measured
using the Normalized Levenshtein Distance on video frames

4.2 OCR Engines and Screenshots
Figure 4 shows the overall accuracy of each OCR engine in extract-
ing source code from screenshots. ABBYY FineReader and Google
Drive API outperformed the four other OCR engines, scoring an
overall accuracy of 96% and 94%, respectively. Additionally, GOCR
and Tesseract had an accuracy of 78% and 60%, respectively. At long
last, OCRAD and Cuneiform obtained again the lowest scores, with
an accuracy of 32% and 18%, respectively.

We notice that overall the accuracies of all OCR engines are
higher for screenshots than for video frames. This is to be expected
given that in general the screenshots were of higher quality com-
pared to video frames, which varied in quality. However, we observe
that the trend in accuracies remains the same among the six OCR
engines, with Google Drive API and ABBYY FineReader again scor-
ing the best, while Tesseract remains fourth. This offers additional
support for the idea that Tesseract is not the best OCR engine choice

17https://zenodo.org/record/3743394

A Study on the Accuracy of OCR Engines for Source Code Transcription from Programming Screencasts MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

for extracting source code from images, but rather Google Drive API
and ABBYY FineReader would represent much better choices, since
they achieve almost perfect accuracies on both video frames and
screenshots.

ABBYY

Cun
eif

orm
Gdri

ve
GOCR

OCRAD

Te
sse

rac
t

0%

20%

40%

60%

80%

100%

Figure 4: Boxplots of the OCR engines’ accuracies measured
using the Normalized Levenshtein Distance on screenshots

4.3 OCR Engines and Font Types
Figure 5 shows the accuracy of applying OCR engines on screen-
shots that contain source code written using different font types.
The font DejaVu Sans Mono performed the best among all fonts
for four out of the six engines. The exceptions were Google Drive
API and ABBYY FineReader, where the font Consolas was the best.
Across all engines, DejaVu Sans Mono achieved the highest aver-
age accuracy of 71%, followed by Consolas with 67%. The average
accuracy across all OCR engines of Arial, Courier New, and Times
New Roman were 63%, 60%, and 54%, respectively.

Notably, ABBYY FineReader and Google Drive obtained an accu-
racy of over 90% for all fonts. GOCR scored its best accuracy for
DejaVu Sans Mono and its worst accuracy for Times New Roman.
Times New Roman also had the worst accuracy among all fonts for
Tesseract, with 20% less than the average of the other five fonts.
OCRAD scored less than 50% accuracy for all fonts; however, it
showed better results for DejaVu Sans Mono, with 11% higher ac-
curacy than the average of all fonts. Finally, Cuneiform scored the
worst among all OCR engines, performing particularly poorly with
the font Courier New, which achieved an accuracy 11% lower than
the average of all fonts for this engine.

Overall, we observe that for four out of the six engines, the choice
of font type has an impact on their accuracy, with differences of
at least 20% between their worst and their best performing fonts.
In some cases the differences between fonts are very noticeable,
such as Cuneiform with Courier New and Arial, where the accuracy
triples between the two fonts. However, for the best performing
engines ABBYY FineReader and Google Drive, the choice of font
is not as important, as they perform almost perfectly for all fonts.
Therefore, the choice of OCR engine seems to be more important than
the choice of font type.

4.4 OCR Engines and Font Sizes
Figure 6 shows the accuracy of applying OCR engines on screen-
shots that contain source code written using different font sizes.

Unsurprisingly, the results show that the accuracy increases with
the increase in font size for all engines. The differences are substan-
tial for the four least-performing engines, showing that size has
a noticeable impact on these engines. The accuracy of GOCR was
impacted by an average of 5.4% by increasing the size. Additionally,
the average increases in the accuracy of Tesseract, OCRAD, and
Cuneiform were 8.6%, 8.8%, and 7.3%, respectively. On the other
hand, Google Drive and ABBYY FineReader were barely impacted
by the change in size, as both of them scored more than 90% accu-
racy for all font sizes. This again supports the idea that the choice
of OCR engine is the most important, more important than the font
size. Choosing a highly accurate OCR engine such as Google Drive
and ABBYY FineReader seems to mitigate also this factor.

Times Courier New Arial DejaVu Consolas
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ABBYY Cuneiform Gdrive GOCR OCRAD Tesseract

Figure 5: Accuracy of OCR engines for different font types

14pt 13pt 12pt 11pt 10pt
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ABBYY Cuneiform Gdrive GOCR OCRAD Tesseract

Figure 6: Accuracy of OCR engines for different font sizes

4.5 Programming Languages
Figure 7a shows the accuracy of the extracted code using the six
OCR engines on video frames that contain code written in the three
programming languages: Java, Python, and C#. The OCR engines
scored the highest accuracy on Java source code, followed by C#
and Python, with an overall accuracy across all OCR engines of
62% for Java and 56% for C# and Python. Google Drive obtained
comparable results for all programming languages with a slight
improvement for Python and Java (93% for Python and Java, and
92% for C#). ABBYY FineReader obtained its best accuracy for C#,

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Abdulkarim Khormi1 , 2 , Mohammad Alahmadi1 , 3 , Sonia Haiduc1

followed by Java, then Python with an average accuracy of 92%,
89%, and 84%, respectively. GOCR had similar results for C# and
Java (65% and 64%, respectively) and a worse result for Python with
an average accuracy of 58%. Tesseract obtained its best accuracy
for Python, followed by Java, then C# with an average accuracy of
64%, 59%, and 48%, respectively. OCRAD obtained its best accuracy
for Java, followed by C#, then Python with an average accuracy of
36%, 23%, and 18%, respectively. Finally, Cuneiform obtained its best
accuracy for Java, followed by Python, then C# with an average
accuracy of 28%, 19%, and 14%, respectively.

Python Java C#
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ABBYY Cuneiform Gdrive GOCR OCRAD Tesseract

(a)

Python Java C#
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ABBYY Cuneiform Gdrive GOCR OCRAD Tesseract

(b)

Figure 7: The accuracy of OCR engines for the different pro-
gramming languages on (a) video frames and (b) screenshots

Figure 7b shows the accuracy of the extracted code using the
six OCR engines on the screenshots of code written in the three
programming languages. The OCR engines scored the highest accu-
racy overall on Java source code, followed by C#, then Python with
an overall accuracy of 74%, 59%, and 55%, respectively, across all
six engines. Overall, the accuracy on Java was the best for all OCR
engines. On the other hand, the accuracy on Python was the lowest
for all OCR engines except for Google Drive. Moreover, ABBYY
FineReader and Google Drive obtained comparable results for all
programming languages, with a slight preference for Java. On the
other hand, the gap between the accuracy on Java and Python for
the rest of the engines was substantial (e.g., 35% for Tesseract, 32%
for Cuneiform, and 27% for OCRAD).

Overall, the results again support the idea that the right OCR
engine will perform well no matter the language in which the source
code is written. This is especially true for screenshots, where both
Google Drive and ABBYY FineReader achieved consistent accura-
cies of over 90% irrespective of the programming language. While
the accuracy of ABBYY FineReader decreases for Python in the case
of video frames, this could be partially explained by the variability
in quality when it comes to video frames compared to the stable
quality of the screenshots in our dataset.

4.6 OCR Engines without Trimming for
Python

Some programming languages, such as Python, use whitespace to
determine the grouping of statements. Therefore, we may need
to consider not trimming the whitespace for such programming
languages. Figure 8 shows the results of applying OCR engines on
Python code with and without removing the whitespace and blank
lines. The trimming step enhanced the accuracy of OCR engines
overall by 6.43% on average. The accuracy of ABBYY FineReader and
Google Drive increased by 14.04% and 13.06%, respectively when
using trimming. Additionally, the accuracy of Tesseract increased by
6.02%. Finally, the trimming step did not substantially affect OCRAD,
GOCR, and Cuneiform; their accuracy slightly increased by 2.64%,
2.37%, and 0.45%, respectively. Note that OCRAD and Cuneiform
worked the worst in extracting the source code regardless of the
trimming step.

ABBYY

Cuneiform

Gdrive

GOCR

OCRAD

Tesseract

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Trimmed

Non-trimmed

Figure 8: Comparing the accuracy ofOCRengines onPython
with and without trimming

4.7 The Time Performance of OCR Engines
Table 2 shows the code extraction time of the six OCR engines we
used in this study. Roughly, it took less time to extract source code
from video frames than screenshots for all OCR engines except
Google Drive. Screenshots have higher quality (i.e., more pixels)
than video frames, which might slightly delay the processing and
increase the code extraction time. Google Drive is the only OCR
engine that extracts code in the cloud, which might cause the de-
lay we observed in its extraction time. ABBYY and Google Drive
performed the slowest for both video frames and screenshots. Note
that they both produced the most accurate results as shown previ-
ously, but that might involve expensive image processing which

A Study on the Accuracy of OCR Engines for Source Code Transcription from Programming Screencasts MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 2: The time performance results (in seconds of the six OCR engines in extracting source code from images

ABBYY Cuneiform Gdrive GOCR OCRAD Tesseract
Total time (sec) 753 40 1807 14 4 467

Videos Images 300 300 300 300 300 300
Time/image 2.51 0.13 6.02 0.05 0.01 1.56
Total time (sec) 9528 957 21333 464 132 17262

Screenshots Images 3750 3750 3750 3750 3750 3750
Time/image 2.54 0.26 5.69 0.12 0.04 4.60

could explain the delay in the extraction process. It took less than
a second for Cuneiform, GOCR, and OCRAD to extract code from
each image. Although Cuneiform and OCRAD were the fastest,
they produced the least accurate results compared to other OCR
engines. GOCR, on the other hand, managed to produce reasonable
results in near real-time (e.g., less than 12 milliseconds per image).

5 RELATED WORK
5.1 Analyzing Programming Video Tutorials
Over the last few years, researchers have started analyzing video
programming tutorials with the goal of extracting, classifying, and
leveraging the information contained in them to support developers
in their daily tasks. We present an overview of these works below.

Parra et al. [21] proposed an approach to tag video tutorials in
order to make it easier for developers to identify relevant videos.
Poche et al. [22] analyzed and classified video comments based
on their relevance to the content of the video they correspond to.
Moslehi et al. [18] automated the process of linking source code files
to the videos that exemplify the features that the source code files
implement. Bao et al. [4] proposed VT-Revolution, a video tutorial
authoring system that records all actions taken by developers within
the video. Zhao et al. [33], on the other hand, automated the process
of detecting actions in existing video tutorials by applying computer
vision and deep learning algorithms.

Ott et al. [20] trained a convolutional neural network (CNN) to
recognize frames that contain code in programming video tutorials.
The authors also used a CNN to predict the programming language
(Java or Python) of code captured in images using only image
features, without having to extract the image contents [19]. In our
previous work [2], we proposed an approach to locate the editing
window of the source code within video frames, therefore enabling
noise removal before OCR is being applied. While our long-term
goal is similar to these previous works (i.e., correct extraction of
source code from video tutorials), the empirical study we present
in this paper focuses on identifying the best OCR engine for the
process of code extraction.

The most related works to our study are the few approaches
that have utilized OCR engines in order to extract the source code
appearing on the screen. Ponzanelli et al. [26] proposed an approach
that identifies various types of fragments in video tutorials based
on their contents and allows developers to search for individual
video fragments instead of full videos. One of the types of fragments
identified was "code implementation", in which the authors applied
OCR (Tesseract) on each frame to find and extract code. Yadid et al.
[32] also used Tesseract on programming video frames to extract

source code and proposed two main heuristics to post-process and
fix OCR errors. Khandwala et al. [14] extracted source code using
Tesseract and made it available to developers while watching the
video. In this study, we found that Tesseract did not produce a
high-quality source code transcription. We also found that Google
Drive and ABBYY FineReader performed far better and, as opposed
to Tesseract, were not impacted by factors such as font size, font
type, or programming language.

5.2 Empirical Evaluation of OCR Engines
Manually transcribing text from a large set of images is an over-
whelming and impractical task which requires intensive human
effort and time. OCR engines have therefore been very helpful in
this regard, as they are able to automatically extract text docu-
ments from images which are then easy to search and process. OCR
engines have been successfully applied in many different areas,
such as machine learning [5, 16], biomedical informatics [9], and
computer vision [12].

Empirical studies evaluating OCR engines have been performed
in different fields. Tafti et al. [31] performed experimental eval-
uations on the performance of Google Docs, Tesseract, ABBYY
FineReader,and Transym. The authors used a synthesis dataset that
includes various categories, such as license plates, barcodes, and
PDF files. We focus our work on a completely different category,
source code images taken from two sources: screenshots and screen-
casts. However, our results are similar in that we also found that
Google Drive and ABBY FineReader perform the best, even though
our accuracies are much higher than those in the study by Tafti et
al. [31].

Helinski et al. [13] compared the accuracy of Tesseract and AB-
BYY FineReader. The comparison was limited to Polish historical
printed documents, and both Tesseract and ABBYY were trained
on a historical documents dataset. Dhiman et al. [10] compared the
accuracy of Tesseract and GOCR using three different font types.
However, they limited the maximum number of characters in each
image to only 39.

6 THREATS TO VALIDITY
We faced two main threats to the internal validity of our results.
First, our study involved the manual annotation of the code bound-
ing box in each video frame. The bounding box must include all the
source code and exclude any information outside the code editing
box (e.g., the line number displayed on the left of each line). To
mitigate this threat, one author manually annotated each frame and
another author validated each annotation. Second, we manually
transcribed the ground-truth code, which had to contain no errors.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Abdulkarim Khormi1 , 2 , Mohammad Alahmadi1 , 3 , Sonia Haiduc1

To alleviate this threat, four annotators manually transcribed the
code, one author then validated and corrected the transcribed code,
followed by another author who re-validated each transcribed code
snippet.

Construct validity in our case regards the metric we used to eval-
uate the accuracy of the six OCR engines. We mitigate this threat
by employing well-known and widely used edit-based metrics pre-
viously employed in many research disciplines to measure OCR
accuracy [13, 31]. Note that since OCR engines make mistakes at
the character level, measuring the edit distance is a more reliable
assessment than token-based distance.

Concerning the threats to the external validity, the OCR eval-
uations we performed might be limited to certain programming
languages, font types, font sizes, and image resolutions. To mitigate
these threats, we assessed the performance of each OCR engine
when applied on three different programming languages, five font
types, five font sizes that range from 10 to 14, as well as on images
of various quality (e.g., screenshots had the highest quality, whereas
the quality of the video frames varies).

7 DISCUSSION
Extracting noise-free source code from programming screencasts
is a challenging problem which has been studied in several works
over the last few years. The main steps deal with detecting which
frames contain code [20], localizing the main code editing window
[1, 2], choosing and applying an OCR engine to the code editing
window, post-processing the extracted code to remove the noise
and correct the code [32], and merging different extracted code
segments to obtain the complete code [14]. Currently, the only
step that has not been investigated at all in previous work is the
choice of OCR engine and determining the best suited OCR engine
for code extraction. Choosing the best OCR engine can reduce the
effort and the errors involved in post-processing the extracted code,
therefore getting us closer to reusable code. Addressing this gap is
the main goal of the study we presented in this paper. We found
that choosing the right OCR engine is extremely important as it
can lead to a significant reduction in transcription errors.

One important factor in our study is the type of images we
collected and evaluated the six OCRs on. Current works that ex-
tracted source code from programming screencasts use YouTube to
collect the data [24, 25, 32]. Therefore, we evaluated the six OCR
engines on frames taken from programming screencasts hosted
on YouTube to help future researchers choose the best OCR that
can be applied to video frames. We found that Google Drive
and ABBY FineReader are the most accurate, as well as the
most robust OCR engines. We therefore highly recommend
researchers using OCR on video tutorials to choose one of
these two engines instead of Tesseract for the highest accu-
racy. We particularly recommend Google Drive if the pro-
gramming tutorials feature Python code.

We also explored the accuracy versus speed trade-off in the
choice of OCR engine. A high-speed OCR engine is more efficient
in extracting source code in real-time, which may be important for
time-sensitive operations, whereas a more accurate OCR engine is
desirable whenever the code extraction is done in a preliminary,
offline step. Most of the previous approaches that extracted and

used the source code found in videos so far have had two phases.
The first phase is performed offline, and is where all the infor-
mation (including source code) is extracted from programming
screencasts and indexed or further processed. Then, during the
second phase, this information is displayed to the developers or
made available for searching. Therefore, based on the research per-
formed so far in this direction, speed is not as crucial as accuracy.
Therefore, in these applications, it makes again more sense for
researchers to choose the most accurate OCR engines, such
as Google Drive or ABBYY FineReader. For applications that
want to prioritize speed without significantly impacting the
accuracy, we recommend using GOCR.

We also investigated screenshots of code in order to establish if
font size or type have an influence over the quality of the automatic
transcription. This is important in order to offer recommendations
to video creators and to the best of our knowledge, this is the first
paper that aims to do so. We found that the best OCR engines
Google Drive and ABBY FineReader are able to extract the code
with high accuracy irrespective of which of the five fonts and five
sizes were chosen. While we studied these aspects on screenshots,
which have a higher resolution compared to video frames, Google
Drive and ABBY FineReader obtained very encouraging and robust
results also on video frames. Therefore, we are confident in
recommending to video creators any of the five fonts and
five sizes we studied, in order to ensure the best OCR code
extraction from their videos.

8 ACKNOWLEDGMENTS
Sonia Haiduc was supported in part by the National Science Foun-
dation grants CCF-1846142 and CCF-1644285.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we performed an empirical evaluation of the accuracy
and the speed of six optical character recognition (OCR) engines
using two datasets collected from programming screencasts and
source code screenshots. Additionally, we showed the impact of
different factors such as font type and size on the quality of the
extracted code. Although Google Drive and ABBYY FineReader
performed the slowest compared to the other four OCR engines, we
found that they produced the most accurate results when applied to
programming screencasts and source code screenshots, and there-
fore, are well-suited for offline source code extraction. OCRAD and
Cuneiform were the fastest engines for code transcription, but at
the price of accuracy. Ultimately, we offer a set of guidelines for
video creators and/or future researchers on which OCR engine (i)
produces the best results, (ii) works in near real-time, and (iii) is
more tolerant to different font configurations.

In future work, we plan to investigate OCR engines with models
trained on our particular type of data. Also, we plan to experiment
with applying computer vision algorithms for image denoising and
smoothening on our input images to improve the quality of the
code extraction. We will also focus on analyzing OCR errors and
fixing them. This will provide a bigger picture onwhich OCR engine
should we use for extracting source code with pre-processing and
post-processing steps.

A Study on the Accuracy of OCR Engines for Source Code Transcription from Programming Screencasts MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Mohammad Alahmadi, Jonathan Hassel, Biswas Parajuli, Sonia Haiduc, and

Piyush Kumar. 2018. Accurately predicting the location of code fragments in
programming video tutorials using deep learning. In Proceedings of the 14th
International Conference on Predictive Models and Data Analytics in Software
Engineering - PROMISE’18. ACM Press, Oulu, Finland, 2–11. https://doi.org/10.
1145/3273934.3273935

[2] Mohammad Alahmadi, Abdulkarim Khormi, Biswas Parajuli, Jonathan Hassel,
Sonia Haiduc, and Piyush Kumar. 2020. Code Localization in Programming
Screencasts. Empirical Software Engineering (2020), 1–37.

[3] Haslina Arshad, Rimaniza Zainal Abidin, and Waqas Khalid Obeidy. 2017. Identi-
fication of Vehicle Plate Number Using Optical Character Recognition: A Mobile
Application. Pertanika Journal of Science and Technology 25 (2017), 173–180.

[4] Lingfeng Bao, Zhenchang Xing, Xin Xia, and David Lo. 2018. VT-Revolution:
Interactive programming video tutorial authoring and watching system. IEEE
Transactions on Software Engineering (2018). https://doi.org/10.1109/TSE.2018.
2802916

[5] Sameeksha Barve. 2012. Optical character recognition using artificial neural
network. International Journal of Advanced Research in Computer Engineering &
Technology 1, 4 (2012), 131–133.

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 1589–1598.
https://doi.org/10.1145/1518701.1518944

[7] Pierre Carbonnelle. [n.d.]. Top IDE index. https://pypl.github.io/IDE.html. Ac-
cessed: 2019-10.

[8] Rob Carter, Philip B Meggs, and Ben Day. 2011. Typographic design: Form and
communication. John Wiley & Sons.

[9] Thomas Deselaers, Henning Müller, Paul Clough, Hermann Ney, and Thomas M
Lehmann. 2007. The CLEF 2005 automatic medical image annotation task. Inter-
national Journal of Computer Vision 74, 1 (2007), 51–58.

[10] Shivani Dhiman and A Singh. 2013. Tesseract vs gocr a comparative study.
International Journal of Recent Technology and Engineering 2, 4 (2013), 80.

[11] Adam Grzywaczewski and Rahat Iqbal. 2012. Task-specific information retrieval
systems for software engineers. J. Comput. System Sci. 78, 4 (2012), 1204–1218.

[12] Maya R Gupta, Nathaniel P Jacobson, and Eric K Garcia. 2007. OCR binarization
and image pre-processing for searching historical documents. Pattern Recognition
40, 2 (2007), 389–397.

[13] Marcin Helnski, Miłosz Kmieciak, and Tomasz Parkoła. 2012. Report on the
comparison of Tesseract and ABBYY FineReader OCR engines.

[14] Kandarp Khandwala and Philip J. Guo. 2018. Codemotion: Expanding the design
space of learner interactions with computer programming tutorial videos. In
Proceedings of the Fifth Annual ACM Conference on Learning at Scale - L@S ’18.
ACM Press, London, United Kingdom, 1–10. https://doi.org/10.1145/3231644.
3231652

[15] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[16] Huei-Yung Lin and Chin-Yu Hsu. 2016. Optical character recognition with fast
training neural network. In 2016 IEEE International Conference on Industrial
Technology (ICIT). IEEE, 1458–1461.

[17] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, camera,
action: How software developers document and share program knowledge using
YouTube. In Proceedings of the 23rd IEEE International Conference on Program
Comprehension (ICPC’15). Florence, Italy, 104–114.

[18] Parisa Moslehi, Bram Adams, and Juergen Rilling. 2018. Feature location using
crowd-based screencasts. In Proceedings of the 15th International Conference on
Mining Software Repositories - MSR ’18. ACM Press, Gothenburg, Sweden, 192–202.
https://doi.org/10.1145/3196398.3196439

[19] Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and Erik Linstead.
2018. A deep learning approach to identifying source code in images and video.
In Proceedings of the 15th IEEE/ACM Working Conference on Mining Software
Repositories. 376–386.

[20] Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cris-
tiano Firmani, and Erik Linstead. 2018. Learning lexical features of programming
languages from imagery using convolutional neural networks. , 336-339 pages.

[21] Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc. 2018. Automatic tag
recommendation for software development video tutorials. In Proceedings of the
26th Conference on Program Comprehension. ACM, 222–232.

[22] Elizabeth Poché, Nishant Jha, Grant Williams, Jazmine Staten, Miles Vesper, and
Anas Mahmoud. 2017. Analyzing user comments on YouTube coding tutorial
videos. In Proceedings of the 25th International Conference on Program Compre-
hension. IEEE Press, 196–206.

[23] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bourdev,
Shai Avidan, and Michael F Cohen. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. ACM, 135–144.

[24] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!: Extracting relevant fragments from software development
video tutorials. ACM Press, 261–272. https://doi.org/10.1145/2884781.2884824

[25] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. CodeTube:
Extracting relevant fragments from software development video tutorials. In
Proceedings of the 38th ACM/IEEE International Conference on Software Engineering
(ICSE’16). ACM, Austin, TX, 645–648.

[26] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Rocco Oliveto, Massimiliano
Di Penta, Sonia Cristina Haiduc, Barbara Russo, and Michele Lanza. 2017. Au-
tomatic identification and classification of software development video tuto-
rial fragments. IEEE Transactions on Software Engineering (2017). https:
//doi.org/10.1109/TSE.2017.2779479

[27] Alice Rawsthorn. 2007. Helvetica: The little typeface that leaves a big mark.
https://www.nytimes.com/2007/03/30/style/30iht-design2.1.5085303.html

[28] Ray Smith. 1994. A simple and efficient skew detection algorithm via text row
algorithm. Personal Systems Laboratory, HP Laboratories Bristol, HPL-94-113
December (1994).

[29] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[30] Joel Spolsky. 2001. User Interface Design For Programmers. https://www.
joelonsoftware.com/2001/10/24/user-interface-design-for-programmers/

[31] Ahmad P Tafti, Ahmadreza Baghaie, Mehdi Assefi, Hamid R Arabnia, Zeyun
Yu, and Peggy Peissig. 2016. OCR as a service: an experimental evaluation of
Google Docs OCR, Tesseract, ABBYY FineReader, and Transym. In International
Symposium on Visual Computing. Springer, 735–746.

[32] Shir Yadid and Eran Yahav. 2016. Extracting code from programming tutorial
videos. In Proceedings of the 6th ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!’16). ACM,
Amsterdam, The Netherlands, 98–111.

[33] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li. 2019.
ActionNet: vision-based workflow action recognition from programming screen-
casts. In Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, 350–361.

[34] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, Guoqiang Li, and Shang-
hai Jiao Tong. 2019. ActionNet: Vision-based workflow action recognition from
programming screencasts. In Proceedings of the 41st IEEE/ACM International
Conference on Software Engineering (ICSE’19).

https://doi.org/10.1145/3273934.3273935
https://doi.org/10.1145/3273934.3273935
https://doi.org/10.1109/TSE.2018.2802916
https://doi.org/10.1109/TSE.2018.2802916
https://doi.org/10.1145/1518701.1518944
https://pypl.github.io/IDE.html
https://doi.org/10.1145/3231644.3231652
https://doi.org/10.1145/3231644.3231652
https://doi.org/10.1145/3196398.3196439
https://doi.org/10.1145/2884781.2884824
https://doi.org/10.1109/TSE.2017.2779479
https://doi.org/10.1109/TSE.2017.2779479
https://www.nytimes.com/2007/03/30/style/30iht-design2.1.5085303.html
https://www.joelonsoftware.com/2001/10/24/user-interface-design-for-programmers/
https://www.joelonsoftware.com/2001/10/24/user-interface-design-for-programmers/

	Abstract
	1 Introduction
	2 Background
	2.1 OCR Engines
	2.2 Font Types

	3 Empirical Study
	3.1 Datasets and Data Collection
	3.2 Accuracy Metric
	3.3 Research Questions and Methodology

	4 Results
	4.1 OCR Engines and Video Frames
	4.2 OCR Engines and Screenshots
	4.3 OCR Engines and Font Types
	4.4 OCR Engines and Font Sizes
	4.5 Programming Languages
	4.6 OCR Engines without Trimming for Python
	4.7 The Time Performance of OCR Engines

	5 Related Work
	5.1 Analyzing Programming Video Tutorials
	5.2 Empirical Evaluation of OCR Engines

	6 Threats to Validity
	7 Discussion
	8 Acknowledgments
	9 Conclusions and Future Work
	References

